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Abstract—A new defected ground structure (DGS) for the Microstrip Line
microstrip line is proposed in this paper. The proposed DGS v/

unit structure can provide the bandgap characteristic in some
frequency bands with only one or more unit lattices. The equiv-
alent circuit for the proposed defected ground unit structure is
derived by means of three-dimensional field analysis methods.
The equivalent-circuit parameters are extracted by using a simple
circuit analysis method. By employing the extracted parameters
and circuit analysis theory, the bandgap effect for the provided
defected ground unit structure can be explained. By using the
derived and extracted equivalent circuit and parameter, the
low-pass filters are designed and implemented. The experimental
results show excellent agreements with theoretical results and the
validity of the modeling method for the proposed defected ground
unit structure.

DGS
in Ground Plane

Index Terms—Bandgap, defected ground structure, equivalent

circuit, low-pass filter.
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|. INTRODUCTION ! ) ) . . . _
Fig. 1. Three-dimensional view of the proposed DGS unit section, which is

DEFECTED ground structure (DGS) for the microstrigtched in the ground plane of a microstrip line.
line, such as various microstrip photonic bandgap (PBG)

structures, which have periodic etched defects in backsigg affect on the bandgap property, such as the number of lattice,
metallic ground plane, is one of the most interesting areas gftice shapes, lattice spacing, and relative volume fraction. An-
research. The PBG research was done in the optical fields ofigher difficulty in using this PBG circuit is caused by the radia-
inally, but the PBG structures can be applied to wide frequengyn from the periodic etched defects.
ranges, including the microwave frequency band by properly|n this paper, a new etched lattice shape for the microstrip is
scaled dimension. Recently, there has been an increasigposed as a unit DGS. An etched defect in ground plane dis-
interest in microwave and millimeter-wave applications alirbs the shield current distribution in the ground plane. This
PBG circuits. [1]-[3] The only PBG structures, which havelisturbance can change characteristics of a transmission line
a periodic structure, have been known as providing rejectigiich as line capacitance and inductance. The proposed DGS
of certain frequency bands, i.e., bandgap effect. [4]-[8] Mamnsists of narrow and wide etched areas in backside metallic
passive and active microwave and millimeter devices have befgund plane as shown in Fig. 1, which give rise to increasing
developed to suppress the harmonics and realize the compRgteffective capacitance and inductance of a transmission line,
physical dimensions of circuits. Several efforts have been ma%pectivew_ Thus, ahC equi\/a|en[ circuit can represent the
to realize such devices on a various PBG circuits—e.g., a powgbposed unit DGS circuit. The effects of physical dimensions
amplifier with PBG circuits [9], [10], the PBG structure forof the proposed DGS on these equivalent-circuit parameters are
slow-wave circuits [11], and realization of a magnetic wall igjescribed. It is the purpose of this paper to show a potential
waveguide [12], [13]; their experimental results are sufficiengr applying the proposed DGS to practical circuits. To design
to show the validity of PBG circuit applications. However, it I% circuit with the proposed DGS section, the equiva|ent cir-
difficult to use a PBG structure for the design of the microwavguit and parameters for the DGS section should be extracted.
or millimeter-wave components due to the difficulties of thﬂ] this paper, the equiva|ent circuit of the proposed DGS unit
modeling. There are too many design parameters, which hav&ction is derived by using the field analysis method. The equiv-
alent-circuit parameters are extracted based on the circuit anal-
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a low-pass filter. The shunt capacitance for low-pass filters will 0
be implemented by employing the open stub.
The low-pass filter using the DGS circuit has a number of 1
attractive features, which include the following. = =
1) The structure is very simple 2 2 ,"' B
2) The stopband is very wide and more deeper than that of 2 l,r"f
conventional low-pass filter. 5 -0+
3) The insertion loss is very low. = i« i
4) Extremely small element values for implementation of A T AR 2 2
low-pass filter can be realized. ' —— Tm . _T321= ng
The validity of the modeling method for the proposed DGS unit 0~ 1~ . 4 ¢ & 7 & & % 1
section and the design method for the low-pass filter is verifiec Frequency [GHz]

by experiments.

Fig. 2. SimulatedS-parameters for the proposed DGS unit lattices. The gap
distancey is 0.2 mm for all cases. The lattice dimensiomis= b = 1.3 mm,

Il. FREQUENCY CHARACTERISTICS OFDGS a = b = 2.5 mm,anda = b = 4.6 mm, respectively. The substrate with
62-mil-thick and a dielectric constant of ten was used for all cases.

Fig. 1 shows the etched lattice shape of the proposed DGS

section, which is located on the backside metallic ground plang,ctance gives rise to a lower cutoff frequency, as seen in Fig. 2.
The proposed DGS unit section can provide cutoff frequengere are attenuation poles in simulation results on the etched
and attenuation pole in some frequency without any periodigit jattices. These attenuation poles can be explained by par-
array of DGS. In order to investigate the frequency characterigre| capacitance with the series inductance, as was explained
tics of the DGS section, we simulated the DGS unit section %Yeviously. This capacitance depends on the etched gap below
Ansoft HFSS V.6.0. The simulation results show that one-pojge conductor line, which is noted gsin Fig. 1. The capaci-
low-pass filter characteristics, as expected. Existing of the cuteff,ce values are identical for all cases due to the identical gap
frequency means that employing the DGS section increases figance. However, the attenuation pole location, which corre-
effecti.ve. permitt.ivity so that the effective inductapce of a miSponds to the resonance frequency of the paral®kircuit,
crostrip is also increased. The cutoff frequency is mainly dgrso hecomes lower because as the series inductance increases,

pendent to the etched square area in ground plane. There is glsGesonance frequency of the equivalent paralatircuit de-
attenuation pole location, which is due to the etched gap di§pases.

tance. Actually, it is well known that an attenuation pole can be

generated by combination of the inductance and capacitancegl-|nfluence of the Gap Distance

ements. Thus, to explain the frequency characteristic of the pro- . . . :
posed DGS section, the presence of a capacitance factor sh |\é/e now |n\_/est|ga_lte the influence of the etched gap distance.
be needed. The etched gap area, which is placed under a gg{he lattice dimensiom x b was kept constant to 2'.5 Mx
ductor line, as shown in Fig. 1, provides the parallel capacitan%es_ mm for all three cases and the etched gap distance was

with effective line inductance. Thus, the proposed DGS sectigﬁ”ed' The §|mu!at|on _results are shown in Fig. 3. Due t.o .
is fully described by two parameters: the etched lattice dimefionstant lattice dimensions, we can expect that the effective se-
inductances are also constant for all cases. Unlike the influ-

sion and gap distance. We showed the influences of these ke lattice di . here i h ;  f
parameters on frequency characteristics of a microstrip by si lce oflattice dimension, there is no change in cutoff frequency

ulations. All simulations were carried out by three-dimension Fsp|t_e the variation of the gap d|stan<_:e. Th'$ means that the
(3-D) HFSS gap distance does not affect the effective series inductance of

a microstrip. Variation of the effective capacitance only affects
the attenuation pole location, as seen in Fig. 3. As the etched
gap distance increases, the effective capacitance decreases so
The linewidth was chosen to be the characteristic impedartbat the attenuation pole location moves up to higher frequency.
of 502 microstrip line for simulations. Three DGS unit circuitsSimulation results seen in Fig. 2 and Fig. 3 pertinently show the
without any period were simulated with the different dimensioifluences of the proposed DGS section on frequency charac-
In order to investigate the influence of the square lattice dimeteristics.
sion, the etched gap, which is related with the gap capacitanceThis equivalent circuit of the proposed DGS unit can explain
was kept constant to 0.2 mm for all three cases and the etchieel bandgap effect. The series inductance due to the DGS sec-
square area was varied. The substrate with 62-mil thick andi@n increases the reactance of a microstrip with the increasing
dielectric constant of ten was used for all simulations. The sirof the frequency. Thus, the rejection of the certain frequency
ulation results are illustrated in Fig. 2. From Fig. 2, one clearhange can be started. The parallel capacitance with the series
observes that employing the proposed etched lattice increasekictance provides the attenuation pole location, which is the
the series inductance to the microstrip line. This effective seesonance frequency of the parall€l resonator. However, as
ries inductance introduces the cutoff characteristic at certain fthe operating frequency increases, the reactance of the capac-
quency. As the etched area of the unit lattice is increased, theitfhce decreases. Thus, the bandgap between the propagating
fective series inductance increases, and increasing the seriefreguency bands can be occurred.

A. Influence of the Square Lattice Dimension
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Eig. 3. . Sir_nulatecE‘-parameters for the proposed DGS, unitlat'tices. The IatticIg“lg. 4. Simulation results for proposed DGS unit section. The lattice
dimensionis: = b = 2.5 mm for all cases. The gap distanceyis= 0.2 MM,  gimensjon isz = b = 5 mm. The gap distance is= 0.5 mm. The substrate

g = 0.4 mm, andg = 0.6 mm, respectively. The substrate with 62-mil-thick it 31-mil-thick and a dielectric constant of 2.2 was used for simulation.
and a dielectric constant of ten was used for all cases.

I1l. M ODELING AND PARAMETER EXTRACTION

In the previous section, we have shown that the parhf{t|
circuit can represent the equivalent circuit of the proposed DGS
section. Furthermore, effects of the proposed DGS parameters
on the frequency characteristics have been investigated. From a
practical point-of-view, the DGS section can serve as replace- _ o o
ments for a paralleLC resonator circuit in many applications Fig. 5. Equivalent circuit of the proposed DGS circuit, where the dotted box

. . . ‘shows the DGS section.
To apply the proposed DGS section to a practical circuit design

example, it is necessary to extract the equivalent circuit param- %

eters. As an example of the parameter-extraction procedure, I

b, w, andg, which are dimensions of the DGS section shown in A 69‘ '

Fig. 1, have been chosen to be 5, 5, 2.4, and 0.5 mm, respec- :_____:

tively. The substrate for simulations was an RT/Duroid 5880 9e

with 31-mil-thick and a dielectric constantof 2.2. The simula-

tion resultis shown in Fig. 4 where solid lines are simulations by

using 3-D HFSS. There is an attenuation pole near 8 GHz in thig. 6. Butterworth-type one-pole prototype low-pass filter circuit.
field simulation result. Fig. 4 shows the one-pole low-pass filter

with an attenuation pole. In order to explain the cutoff and attefi,are.  is the resonance angular frequency of the paral®|
uation pole characteristic of the proposed DGS section simulf@sonator, which is corresponding to attenuation pole location in

neously, the equivalent circuit should exhibit performances pfy 4 The series inductance of the Butterworth low-pass filter,
low-pass and bandstop filter at the same time. Thus, the simp|&,.n in Fig. 6, can be derived as follows:

circuit shown in Fig. 5 can explain the phenomenon for the pro-

posed DGS section. Xr=w' - Z,g1 )
The circuit parameters for the derived equivalent circuit can

be extracted from the simulation result. The simulation result wtherew’ denotes the normalized angular frequeriydenotes

the proposed DGS unit section can be matched to the one-pile scaled impedance level of the infout terminated portsgand

Butterworth-type low-pass response, which has 3-dB cutoff frig-given by the prototype value of the Butterworth-type low-pass

guency at 3.5 GHz. The series reactance value shown in Fidilter. In order to have the low-pass filter characteristics, the

can be easily calculated by using the prototype element vak@uivalent circuit of proposed DGS unit section, shown in Fig. 5,

of the one-pole Butterworth response. The prototype elemeshiould be equal to the prototype low-pass filter, shown in Fig. 6,

value is given by various references. [14], [15] The parallel cat a certain frequency. The equality at the cutoff frequency of the

pacitance value for the given DGS unit dimension can be ewgw-pass filter is given by the following:

tracted from the attenuation pole location, which is paral@|

resonance frequency, and prototype low-pass filter characteris- Xrclozw, = Xilywog - (3)
tics by using the following procedures. The reactance value of . _ . _
the proposed DGS unit can be expressed as follows: From above equality, the series capacitaficef the equivalent
circuit, shown in Fig. 5, can be obtained as follows:
Wo w We 1
Xio =1/w,C | =2 — = 1 C= S 4
Le /w <w wo> (@) Zog1 Wg - w? )
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TABLE |
EXTRACTED EQUIVALENT-CIRCUIT PARAMETERS FOR THEPROPOSEDUNIT DGS SECTION. THE GAP DISTANCE ¢ 1S 0.2 mmFORALL CASES
DGS dimensions
a=5b=13mm a=b=25mm a=b=4.6mm

Inductance (nH) 0.3675 0.865945 1.97725

Capacitance (pF) 0.51222 0.52845 0.537947
Cutoff Frequency (GHz) 10.15 6.085 3.62
Attenuation pole Location (GHz) 11.6 7.44 4.88

TABLE I
EXTRACTED EQUIVALENT-CIRCUIT PARAMETERS FOR THEPROPOSEDUNIT DGS SECTION. THE LATTICE DIMENSION IS¢ = b = 2.5 mmFORALL CASES
DGS dimension
g2=0.2mm £ =0.4mm g=0.6mm
Inductance (nH) 0.81051 0.90712 0.96825
Capacitance (pF) 0.60286 0.43306 0.34247
Cutoff Frequency (GHz) 6 6.4 6.72
Attenuation pole Location (GHz) 7.2 8.03 8.74

3.678nH 3.678nH 3.678nH

B Z L %
o— —o
[}
0.107pF 0.107%F Zo

0.107pF
l2.33pF

Fig. 7. Extracted equivalent-circuit parameters of the proposed DGS unit
section, which hass = » = 5 mm,w = 2.4 mm, andg = 0.5 mm,
respectively. The substrate with 31-mil-thick and a dielectric constanf 2.2  Fig. 8. Three-pole lumped low-pass filter with the equivalent circuits of aDGS
was used for simulation. unit section. The cutoff frequency is 1.3 GHz with 0.01-dB ripple level.

Once the capacitance value of the equivalent circuit is extracté® design a practical circuit. In the following section, we will

the series equivalent inductance for the given DGS unit sectiggmonstrate an example for low-pass filter design with the de-
can be calculated by the following: rived equivalent circuit and parameters.

1 (5) IV. Low-PASSFILTER DESIGN AND MEASUREMENTS

L=——+—
An2f2.C - . o
In order to show the validity of the equivalent circuit and ex-

wheref, is the frequency of the attenuation pole location énhd tracted parameters for the proposed DGS unit section, three-pole
is the extracted series capacitance value. Therefore, we canlob~pass filters with attenuation pole were designed by em-
tain each equivalent-circuit parameters by using (4) and (5), glsying the proposed DGS unit structure at the cutoff frequency
shown in Fig. 7 [16]. Tables | and Il show the extracted equiwf a 1.3-GHz with 0.01-dB ripple level. Fig. 8 shows the lumped
alent-circuit parameters for the proposed DGS unit sectiohew-pass filter circuit with the equivalent circuit for DGS unit
which are simulated in Figs. 2 and 3. structure. The lumped low-pass filter circuit can be easily ob-
The equivalent-circuit simulation result using the obtaine@ined from the prototype low-pass element values by proper
equivalent-circuit parameters is shown in Fig. 4 for comparisdrequency and impedance scaling. The parallel capacitance in
with the field calculated result. As show in Fig. 4, the equiva lumped low-pass filter can be realized by using the parallel
alent-circuit simulation result shows excellent agreement witipen stub. The open stubs are realized with a T-junction struc-
field calculations. Thus, the derived equivalent circuit and p&dre and cross-junction structure, respectively. Fig. 9 shows a
rameters for the proposed DGS section can be directly adapsetiematic of the designed low-pass filters with the proposed
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Fig. 11. Measured results for the fabricated DGS low-pass filter using the
cross-junction-type open stub with the simulated data of a low-pass filter for
comparison.

(b)

Fig. 9. Schematics of designed low-pass filters with the proposed DGS unit
sections. (a) T-junction opened stub for parallel capacitance where the stub (@
width w and lengthPr are 5 and 10 mm, respectively. (b) Cross-junction opened
stub for parallel capacitance where the stub widthnd lengthP., are 5 and 6
mm, respectively.

0 £:5 o SR ALY e e S [ LR SEEA T O PRUNp

-10 -
f
m 20 ,f
g : N
3 : el
2 30 . O e ki
- W
g i B
S (®)
i Circuit- EM - Measure~
50 i Simulation | Simulation [| ment Fig. 12. Fabricated DGS low-pass filter with T-junction-type open stub. (a)
| S S e g1 e ST Top view. (b) Bottom view.
P82t || ——s21|——s2 \
60 —— — 1 T v T
0 1 2 3 4 5 6 7 8 9 10 the high-i d induct ti lized b .
Frequency[GHz] € high-impedance Inauctance sections were realized by using

DGS sections with a conductor width corresponding to &50-
Fig. 10. Measured results for the fabricated DGS low-pass filter usid@icrostrip so that it can be expected that for DGS low-pass fil-
the T-junction-type open stub with simulated data of a low-pass filter fqers improve the power-handling capability.
comparison. Fig. 10 shows measured results for the fabricated DGS

low-pass filter using the T-junction-type open stub with sim-
DGS sections. To implement the high-impedance inductangkated data of a low-pass filter for comparison. Furthermore,
with a conventional microstrip, the conductor width becomdsg. 11 shows the comparison between measured results
narrow. This is a limitation to use a microstrip low-pass filtefor the fabricated DGS low-pass filter with the cross-junc-
configuration for high-power applications. By employing théion-type open stub and simulated data. Measurements and
proposed DGS sections, extremely small element values for ifield calculations were carried out with absorbing boundary
plementation of a low-pass filter can be realized. Furthermom@cumstance. Thus, these measurements and field calculations
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low-pass filters show more than 20-dB filters up to 8 GHz. As
can be seen, harmonic responses of conventional microstrip
low-pass filters were started near 6 GHz. On the other hand, the
DGS low-pass filters have relatively wider and deeper stopband
characteristics than those of conventional low-pass filters. The
measured insertion and return losses are less than 0.15 and
20 dB for all DGS low-pass filters, respectively. The measured
data for fabricated DGS low-pass filters shows very low-level
insertion and radiation loss, which could be generated by DGS,
at the passband frequency range. The validity of the modeling
method for the proposed DGS unit section and the design
method for the low-pass filter is verified by experiments.

V. CONCLUSIONS

In this paper, the new DGS unit section and its equivalent
circuit have been proposed. By using a simple circuit analysis
method, the equivalent-circuit parameter extraction method
for the proposed DGS unit section has also been derived. Fur-
thermore, by employing the extracted parameters, the bandgap
effect for the provided DGS section was explained based on
circuit analysis theory. In order to show the validity of the

proposed DGS structure and the derived equivalent circuit,

()

the three-pole low-pass filters have been designed, fabricated,

Fig. 13. Fabricated DGS low-pass filter with cross-junction-type open stu@.nd then measured. Numerical Si_mwations USing 3-D HFSS
(a) Top view. (b) Bottom view. show good agreement with experiments. The proposed DGS
sections can realize small element values for implementation of

20

-30

Magnitude[dB]

40

50 Conventional H T-junction | Cross-junction

N1 T
o 1 2 3 4 5 8 T & 8§ {0

Frequency[GHz]

Fig. 14. Comparison of measured results for the fabricated DGS low-pass

alow-passfilter. Furthermore, the fabricated low-pass filter with
the proposed DGS sections is expected to provide the improved
the power-handling capability because that DGS section can
implement the high impedance inductance line with broader
o - conductor width than that of a conventional microstrip. The
K\\\m N “N"“Wm proposed DGS low-pass filters also have wider and deeper
v MX stopband characteristics than those of conventional low-pass
filters. The measured data for fabricated DGS low-pass filters
; shows fairly good insertion-loss characteristic. This newly
proposed DGS section and its equivalent circuit could also find
R ovin | Peowsip e VI | B W various applications such as a bandpass filter, phase shifter, and
st |l sat [l st multipole switch.
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show differences with circuit simulated data in stopband due to[1]
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